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ABSTRACT

Data fusion in wireless sensor networks can improve the performance of a

network by eliminating redundancy and power consumption, ensuring fault-tolerance

between sensors, and managing effectively the available communication bandwidth

between network components. This thesis considers a data fusion approach applied

to wireless sensor networks based on fuzzy logic theory. In particular, a cluster-based

hierarchical design in wireless sensor networks is explored combined with two data

fusion methods based on fuzzy logic theory. A data fusion algorithm is presented

and tested using Mamdani and Tsukamoto fuzzy inference methods. In addition, a

concept related to the appropriate queuing models is presented based on classical

queuing theory. Results show that the Mamdani method gives better results than

the Tsukamoto approach for the two implementations considered. We noted that the

proposed algorithm requires low processing and computational power. As a result, it

can be applied to WSNs to provide optimal data fusion and ensures maximum sensor

lifetime and minimum time delay.
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EXECUTIVE SUMMARY

Wireless sensor networks (WSNs), one of the fastest developing technologies,

have many military and commercial applications. Sensor networks can be used not

only for detection, reconnaissance, tracking, and targeting of enemy forces, but also

for monitoring and effectively managing friendly forces. In addition, commercial

applications such as traffic monitoring, environmental measurements and patients’

health can be easily implemented using wireless sensor networks. During the last few

years, the development of new micromechanical and electronic devices has boosted

sensor technologies by reducing the size and improving the power and communication

abilities of sensor nodes.

A sensor network consists of a large number of microsensor nodes, each with

limited power, and communication and processing abilities deployed around a geo-

graphical area to collect data for a special phenomenon or event. Wireless sensor

networks are characterized as highly dense, since a great number of sensor nodes are

required to detect an event. Data collected from a sensor node are forwarded to a

base station (user).

Data forwarded from sensor nodes to the base station forms a traffic flow.

Data can be sent directly to the base station in one-hop or multiple-hops using relay

nodes. In the one-hop scenario, the data is forwarded directly from the sensor nodes

to the base station. As for the multi-hop scenario, the data is sent to intermediate

nodes and then forwarded to the base station. In reality, because of their drawbacks,

both scenarios are inappropriate for wireless sensor networks. In the one-hop design, a

sensor node has limited power resources and, given that the decrease of power density

is proportional to the square of the distance from the base station, the sensor node

may not be able to communicate with the base station. In the multi-hop design, the

data from each sensor node is forwarded to the base station following a predefined

path designated each time by the routing protocol used. The drawbacks are the high

xvii



latency in the network, since a packet needs much time to reach the destination. As

some sensor nodes are close to the base station, they have to act as relaying nodes

for the rest of the nodes in the network. The latter can drive the relaying nodes to

die early, causing degradation to network performance.

This thesis explores a cluster-based hierarchical design, in combination with

efficient data-fusion of the data, to enhance the performance of wireless sensor net-

works. In a cluster-based hierarchical design, sensor nodes form clusters based on

some predefined criteria. The cluster-heads are responsible for sending data to a cen-

tral node called a sink node. The objective of the proposed architecture is to find

an optimal method to fuse data coming from different sensor nodes or cluster-heads.

The fusion algorithm can be implemented at a sink node or at a cluster-head.

In wireless sensor networks, there are limited options for data fusion tech-

niques. One option is to follow the classic technique applied in sensor networks, the

Kalman filter, and especially, the decentralized Kalman filtering method. However,

the latter method has a weak point: the manipulation of extremely large formatted

data matrices. An alternative method of data fusion in sensor networks is to use

statistical analysis and correlation or covariance methods that also require high com-

putational power. In this thesis, the proposed data-fusion method uses fuzzy logic

theory based on the fundamental characteristic of fuzzy systems that require low

computational power.

The algorithm is based on the Mamdani and the Tsukamoto fuzzy inference

methods. In addition, given that the same algorithm is proposed also as a technique

for the election of a sensor node as a cluster-head, it makes it a powerful tool for

data fusion in wireless sensor networks. For both methods, the algorithm is com-

pleted in four steps: (1) fuzzification of the input variables, (2) rule construction, (3)

aggregation of the rule outcome, and (4) defuzzification using the centroid and the

weighted average techniques, respectively. The input variables for both methods are

the statistical values (mean, minimum, maximum) of the signal-to-noise ratio and the

xviii



distance of each target sensor node from the sink node. The rule construction in step

two expresses the way in which the designer of the system (user) wants to execute

the data fusion in a network. The aggregation of the rule outcome is the combination

of each rule outcome to a new fuzzy set. Finally, the output after the defuzzification

process is a number which expresses a weighted factor for the data fusion process.

All the above steps described are analyzed with examples in the thesis.

The simulation results of the algorithm show that the Mamdani fuzzy method

can be used for data fusion and aggregation in wireless sensor networks. Although

the Tsukamoto method does not give good results, as compared to the Mamdani

method, it may be better than other data fusion methods that use principal com-

ponent analysis or covariance methods and this is an open issue for future work. In

addition, in control systems the Tsukamoto-Sugeno method is better, as compared to

the Mamdani method, due to its computational effectiveness and its many applica-

tions in adaptive control problems. In wireless sensor networks, the Mamdani method

gives better results compared to data fusion.

In the future, the implementation of the cluster-head election algorithm using

fuzzy logic theory and its integration with the data fusion algorithm will be a powerful

tool for traffic management in wireless sensor networks, which require much more

processing power than a simple calculation problem. The advantages of fuzzy theory

for traffic manipulation in sensor networks also influence the power consumption of

the sensor nodes in the network (to send only the appropriate data at a specific period

of time); the increase of the overall throughput of the network (minimizes congestion

in the network and the total time delay); and the reliability of the network (fault-

tolerance, self-configurable). This thesis was the first attempt to use an algorithm

for data fusion in wireless sensor networks implemented at the sensor nodes and

independent of the routing protocol.

xix
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I. INTRODUCTION

Wireless sensor networks (WSNs) are some of the fastest developing technolo-

gies and have many military and commercial applications. Sensor networks can be

used not only for detection, reconnaissance, tracking, and targeting of enemy forces,

but also for monitoring and effectively managing friendly forces. In addition, commer-

cial applications such as traffic monitoring, environmental measurements, and patient

health monitoring can be easily implemented using wireless sensor networks. But dif-

ferent applications also demand different types of design architecture and technical

requirements for sensor networks.

During the last few years, the development of new micromechanical and elec-

tronic devices has boosted sensor technologies by reducing the size and improving the

power and communication abilities of sensors. A sensor network consists of a large

number of microsensors, each with limited power, communication and processing abil-

ities, deployed around a geographical area to collect data for a special phenomenon

or event. Sensors are sensitive to mechanical failures, environmental conditions, and

battery limitations that demand dynamic topology configuration. In other words,

sensor network mechanisms must have self-configuration capabilities. Despite the

sensor limitations, sensor networks have many advantages. They can be deployed

faster than traditional wired networks. They can cover large geographical areas and

provide greater stand-off distance for users. Wireless sensor networks can be charac-

terized as systems with a high degree of tolerance, since a possible failure of a group

of sensors does not influence the operation of the whole system.

Sensor networks have unique characteristics and requirements. Since a sen-

sor network consists of small sensors, each with limited power, communication and

memory capabilities, the sensor network also has limited power and communication

capabilities. In addition, sensors are deployed randomly in an area or a harsh environ-

ment, and they are expected to die after a certain time period of operation requiring

1



the sensor network topology to change dynamically. Because of these characteristics

it is appropriate to distinguish them from conventional ad-hoc networks. A sensor

network can consist of a greater number of sensors than an ad-hoc network. While in

ad-hoc networks, nodes’ batteries are replaceable, in sensor networks nodes’ batteries

are not replaceable. Finally, ad-hoc networks have low redundancy and a high oper-

ational data rate, while sensor networks have high redundancy and a low operational

data rate.

The objective of this thesis is to analyze the data fusion process in hierarchical

cluster-based WSNs and the performance of a new data fusion method based on

fuzzy logic theory. In addition, it focuses on the traffic characteristics in WSNs (data

redundancy) and investigates methods to improve the data propagation from sensor

nodes to a base station. The different wireless sensor architectures are presented in

the next sub-section.

A. WIRELESS SENSOR ARCHITECTURES

There are two basic types of wireless sensor networks: homogeneous and het-

erogeneous. A homogeneous sensor network consists of sensor nodes having the same

operational and technical characteristics(i.e., the same power, the same storage capa-

bilities). A heterogeneous sensor network includes a percentage of sensor nodes with

special technical and operational characteristics (i.e., higher power, greater storage

capabilities).

According to [1], there are two types of wireless sensor networks, based on

the way in which users queries are handled: semiautomated and automated. A semi-

automated architecture implements a base station to manage the communication

procedure between the user and the sensor nodes. Each query is forwarded through

the base station to the sensor nodes, and then all replies are forwarded back again to

the user through the base station. An automated architecture does not implement a

base station to forward a user’s queries. Each sensor node is able to reply to all user

queries.
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According to [2], there are three types of sensor networks, based on the way

that data is collected. In “direct approach” networks, each sensor node sends its data

to the base station. Each transmission is independent and there is no communication

between sensor nodes. This architecture scheme may suffer overload, since there is

a large amount of data due to the great number of sensors. A different approach is

the “data-centric” type, in which data is forwarded to the base station using multi-

hop routing techniques. This approach assumes that the data traffic follows some

known distribution system, which is not an accurate assumption for all kinds of sen-

sor networks. The third approach is the “cluster-based”, in which groups of sensors

form clusters based on some predefined criteria. A sensor node of each cluster, called

a cluster-head, is responsible for collecting and processing the correlated data and

sending the product to the base station. This method provides the ability for traf-

fic load-balancing and is more scalable than the previous two. The cluster-based

approach can be applied to both homogeneous and heterogeneous wireless sensor

networks. The communication architecture design is presented in the next section.

B. COMMUNICATION ARCHITECTURE

Currently, there are two proposed standard protocol stacks for wireless sensor

networks. According to [3], there are some protocols that provide a cross-layer design,

requiring an interaction between different layers of the protocol. This kind of cross-

layer architecture requires changes in all layers when a change is applied to one of the

layers. In [4], the authors suggest a protocol design similar to classical “OSI” model

with an additional three planes: a power management plane, a mobility management

plane and a task management plane, as shown in Figure 1.

The physical layer is concerned with frequency selection and electrical and

functional characteristics. The data link layer is responsible for error control, flow

control and multiplexing data streams. The network layer is responsible for initiating,

supporting, and discontinuing communication connections between sensor nodes. The

transport layer is responsible for data transfer between end points, especially when the
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Figure 1. Sensor networks protocol design [4].

sensor network is designed to have access points to other networks. The application

layer ensures information access in the network. Because of the special requirements

and characteristics of wireless sensor networks, all the layers of the protocol demand

special design methods and techniques. In this thesis, both data-link and network-

layer issues are covered. A general description of the data aggregation is presented in

the next sub-section.

C. DATA AGGREGATION IN WIRELESS SENSOR NET-
WORKS

As noted in previous sections, in data-centric wireless sensor networks, a base

station requires information from the sensor nodes. The sensing data is forwarded to

the base station based on multi-hop routing techniques (i.e., Dijkstra’s algorithm).

According to [5], in routing techniques for sensor networks, there are three deficiencies:

Implosion, Overlap, and Resource Blindness. Implosion is caused by the flooding of

data between nodes. A node forwards data to all its neighbors without knowing if the
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same data has already arrived at the nodes from other sensors. Implosion is described

in Figure 2.

(A)

A

B C

D

(A) (A)

(A)

Figure 2. The implosion problem. Node A starts flooding data to all its neighbors.
Two copies of the data are received by node D. There is one unnecessary send-and-
receive copy of the data [5].

Overlap is caused when two or more nodes cover an overlapping region. Since

they cover an overlapping region, any event detected in this region is forwarded as

data to other nodes. Overlap is described in Figure 3.

(W,Z)

Q

W
Z

A

C

B

(Q,W)

Figure 3. The overlap problem. Sensors A and B cover an overlapping region. When
A and B flood their data, node C receives two copies of the data [5].

Resource blindness is caused when the data sources do not send data based on

the energy resources available during the period of the transmission. Data aggregation

is a method used to overcome all the above three deficiencies.
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Data aggregation or fusion, is a function of combining correlated data to pro-

duce new, fused data with decreased dimensionality. In other words, it is a type of

transformation applied to a system, which has a set of correlated data as input but

just one output (fused data). The output of the system is the fused data, which

requires less communication constraints to be delivered to a user or an intermediate

sensor. The basic advantage of data aggregation is that it reduces the amount of

traffic packets needed to send data from one point of the network to another.

It is clear that data aggregation is not similar to data compression, since the

former method combines correlated data, while the latter reduces the size of the

correlated or uncorrelated data. In wireless sensor networks, the majority of the

data aggregation methods are based on signal processing algorithms, and they can

be characterized as extensions of the collaborative signal and information process-

ing. According to [6], collaborative signal information and processing (CSIP) is an

information-based approach for processing and organizing multi-sensor data in a sen-

sor network.

The data aggregation function is complicated but it becomes simple if exam-

ined from a user’s perspective. A sensor network can be envisioned as a data base

from which each user can recall information at any time using queries. In most recent

applications, sensors collect data and then forward them back to the user or to an

intermediate station for further processing. The information exploited from the user

is used to run its applications. It is clear that in such applications the user requires

the right information at the right time without delays. It is desirable to use a function

able to distinguish information, to aggregate correlated information between nodes,

and finally, to provide it to the user.

In the radio models included in the next chapter, the transmission and re-

ception of an information message from and to a sensor, respectively, requires power

resources. Data aggregation methods are used to decrease the amount of energy

required for a node to transmit an information message.
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D. THESIS ORGANIZATION

In Chapter I we presented the different types of wireless sensor architectures, a

communication protocol design architecture, and the problem of the data aggregation

in WSNs. A sensor node architecture, the power and radio communication models

used at each sensor node and a hierarchical design architecture are presented in Chap-

ter II. In Chapter III we analyze well-known traffic patterns in WSNs, describe the

advantages of the cluster-based over the one-hop and two-hop design architectures,

and the correlation between reports generated from different sensor nodes. In addi-

tion, we present some basic data aggregation methods used in WSNs and finally we

propose an algorithm for the cluster-head election based on fuzzy logic theory. In

Chapter IV we present three appropriate queuing models for WSNs. Finally, we ana-

lyze and evaluate the performance of our proposed data fusion algorithms in Chapter

V.
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II. MODEL ASSUMPTIONS

A. INTRODUCTION

In this Chapter a general sensor node architecture and the power and radio

communication models for a sensor node are presented. This Chapter also includes a

description of a hierarchical clustering architecture used in wireless sensor.

B. NODE ARCHITECTURE AND POWER MODEL

As mentioned in the previous chapter, wireless sensor nodes are small devices

with limited power and storage capabilities. A fundamental architecture of a sensor

node is illustrated in Figure 4.

UNIT
SENSOR
UNIT

ADC
RADIO
UNIT

CPU

MEMORY

MINI
OPS

POWER

Figure 4. Sensor node architecture.

Each node consists of a sensor unit, an analog-to-digital converter (ADC), a

microprocessor (CPU), a radio frequency (RF) circuit (Radio Unit), a mini operating

system (Mini OPS) and a power supply (Power Unit). A sensor unit observes a phe-

nomenon and describes the events through signals. The analog signals are converted

to digital through the analog-to-digital converter (ADC). The CPU and memory units

are responsible for the optimal functionality of each sensor and the completion of its

tasks. The mini operating system is responsible for managing the available power at

any time period. The “RF” circuit insures the transmission and reception of data

streams between sensors. The power unit, usually a battery, is used to supply the
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sensor node with power. The mini operating system is responsible for deciding when

a device should be on or off. The task of each sensor node is to observe phenomena

and detect events, process the collected data, and transmit the data. Each of those

tasks requires an amount of the total available power of the sensor node. In other

words, the total consumed power is the total amount of power consumed for sensing,

processing, and transmission. Table (I) lists some characteristics for different types

of sensor nodes.

Name Application RadioBW RAM ActivePower SleepPower
[Kbps] [Kb] [mw] [µW]

Spec Low BW Sensor < 50 < 4 18 18
Mote General Purpose < 100 < 10 30 30
IMote Video,Acoustic 500 < 128 180 300

Stargate Sensing and Comms > 500 > 512 600 30

Table I. Typical Sensor Characteristics [7].

In this section, a wireless propagation model is presented, assuming that the

transmission range follows a log normal distribution according to [8]. The power at

a receiving node as a function of the power of the transmitting node is given by the

following equations,

Prd = Pt + Gt − PLd + Gr, (II.1)

PLd = PL0 + 10 · n · log

(
d

d0

)
+ Xσ, (II.2)

PL0 = 20 · log

(
4πd

λ

)
, (II.3)

where Pt is the transmitted power in decibels, Prd is the received power in decibels,

Gt is the transmit antenna gain in decibels, Gr is the receive antenna gain in decibels,

PLd is the path loss at distance “d” from the transmit node, PL0 is the free-space

path loss at distance d0 in decibels, n is the path loss exponent between 2 to 4. Xσ

is a zero-mean Gaussian random variable with standard deviation σ (both in dB).
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Xσ accounts for shadowing (actually, reflection, diffraction and scattering) and is

log-normally distributed.

In the RF model, a sensor node is able to successfully receive a transmission

from any other node if the signal strength at the receiver is greater than a given

threshold. In addition, there will be interference due to transmission from the neigh-

boring nodes. A typical plot of the received power at sensor node “B” versus the

transmitted power of a sensor node “A” located at distance “d” from sensor “B” is

shown in Figure 5. Typical values used for Figure 5 are Pt = 0dBm, fc = 900Mhz,

Gr = Gt = 0dB, R = 10m, R0 = 1m, n = 2. Figure 5 show the received power at

the sensor node “B”, as a function of the available transmission power at sensor node

“A”.
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Figure 5. Received power at Node B vs available power at Node A.

According to [9] and assuming that there is only interference caused from

neighboring nodes appeared as Gaussian noise, the signal-to-interference plus noise
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ratio (SNIR) at node “B” is given by the equation,

SNIR =
P

N0 + I
, (II.4)

where N0 is the equivalent thermal noise power at the receiver and I is the summation

of interfering power of all neighboring nodes. The equivalent thermal noise power at

the receiver is equal to N0 = kTsB where k is the Boltzmann’s constant, Ts = Tα+Te is

the system equivalent noise temperature, Tα is antenna equivalent noise temperature,

and Te = (F − 1)T0 is receiver equivalent noise temperature where F is receiver noise

figure. Typical values used for Figure 6 are P = Prd, B = 30Khz, Ts = 300 ◦K,

k = 1.38 · 10−23Joule/Kelvin, Tα = 30◦K, F = 2, T0 = 270 ◦K. A plot of SNIR

for typical values is shown in Figure 6. Figure 6 illustrates the effect of the radio
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Figure 6. SNIR for different values of received power at Node B.

interference from neighbored sensor nodes on the WSN performance. A typical radio

communication model used at sensor nodes is described in the next section.
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C. RADIO COMMUNICATION MODEL

In addition to the wireless propagation model, a radio communication model is

presented in this section according to [10]. A schematic implementation of the latter is

shown in Figure 7. The transmitter, corresponding to the two leftmost blocks shown

in Figure 7, spends energy on the transmission unit and the amplification unit, while

the receiver, corresponding to the rightmost block shown in Figure 7, spends energy

on the reception unit.

L

TRANSMISSION UNIT

Eelec L

AMPLIFICATION UNIT

ε L dn
RECEPTION UNIT

Eelec

Figure 7. Radio Energy Consumption Model.

The energy Et consumed at sensor “A” to send a message of length L-bit to

sensor “B” at distance “d” and the energy Er consumed by sensor “B” to receive the

message are given by the following equations,

Et = L · Eelec + L · εl · d4, (II.5)

Et = L · Eelec + L · εs · d2, (II.6)

Er = L · Eelec + L · Ep, (II.7)

where Et is the energy spent by sensor node A to transmit an L-bit message to node

B at long and short distances in Joules, respectively. In addition, εl is the energy

consumed at the amplifier to transmit at long distances in Joules/bit ·m4, εs is the

energy consumed at the amplifier to transmit at short distances in Joules/bit ·m2,

Eelec is the energy consumed by electronic circuits and Ep is the energy consumed

for further data processing in Joules/bit. The energy consumed by electronic circuits

Eelec depends on modulation schemes (i.e., FSK, BPSK), digital coding methods (i.e.,

PCM), and filtering. The energy consumed at the amplifier to transmit at long (εld
4)
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and short distances (εsd
2) depends on the distance from the receiving sensor node

and the acceptable bit-error rate (BER). According to [11], the energy required to

transmit one bit of data is given by equation,

Ebit =
Estart−up

L
+

Eelec + Eamp

Tbit(Rs log2 M)
(1 +

H

L
), (II.8)

where L is the payload size of a packet in bits, H is a fixed size header for each packet

in bits, Rs is the symbol rate using a M-ary modulation scheme in baud, Tbit is the

time needed for transmission of one bit, Eelec and Eamp are the energy consumed at

electronic circuits and amplifiers, respectively. The energy per bit is proportional to

the consumed energy at electronic circuits and amplifiers, and inversely proportional

to modulation level M and packet size L. Estart−up is the energy overhead required

from amplifiers during the transition from sleep to active mode.

Given the topology of sensor networks, if a base station is located far away from

the sensors, the energy consumed to communicate with any of them is proportional

to the power of four at distance d, otherwise it is proportional to the square of

distance d. In addition, the energy spent between sensor nodes to communicate is

also proportional to the square of distance d. The next section introduces the idea of

the hierarchical clustering design in wireless sensor networks.

D. HIERARCHICAL CLUSTERING ARCHITECTURE

In a hierarchical clustering architecture, sensor nodes form clusters based on

predefined criteria, (i.e., distance between sensors and the energy level). For each

cluster there is one cluster-head, which may be a normal sensor node or a node with

extra power capabilities. The choice of a cluster-head depends on different algorithms

for different types of protocols and models. A hierarchical clustering design is shown

in Figure 8. Only a one-level clustering design is shown, in which sensors form groups

called clusters.

A hierarchical multi-clustering architecture is an extension of the hierarchical

clustering architecture. It can cover a large-scale sensor network without degrading
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Figure 8. Hierarchical Clustering Design.

network performance. Network performance becomes optimal when clusters and nor-

mal sensor nodes which belong to each cluster are uniformly distributed; otherwise

an overload due to an increase of network traffic on some clusters can cause conges-

tion in the network and unreliable communication. Assuming that the sensors are

not uniformly distributed among the clusters, a cluster-head that is responsible for a

cluster with a greater number of sensors than the other’s will be quickly saturated,

spending a great amount of power. In such saturated conditions reclustering is re-

quired, a procedure that causes overhead due to the large number of messages needed

to be exchanged between cluster-heads and between cluster-heads and the sensors. A

multi-clustering architecture design is shown in Figure 9.

In Figure 9, sensors form clusters (level 0) and then one sensor of each group

is picked up as a cluster-head (level 1). A base station, or user is formed at level

two. Sensor nodes that belong to a cluster are called “slaves” or “workers” and are

responsible for sending their observations to the cluster-head. At each cluster-head,

data aggregation methods can be applied depending on the protocol design. For a

multi-level clustering architecture, communication channels between slaves/cluster-

heads and cluster-heads/base station, respectively, are different in order to avoid

frequency overlapping and interference.
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Figure 9. Multi-clustering Hierarchical Design.

In Chapter II we focused on a typical sensor node architecture design, the radio

communication model used at each sensor node, and the idea of cluster-based hier-

archial design in WSNs. Chapter III focuses on the well-known traffic patterns, the

advantages of a cluster-based design over the one-hop and multi-hop design architec-

tures and the different types of the data aggregation methods in WSNs. In addition,

it presents an algorithm for cluster-head election based on fuzzy logic theory.
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III. TRAFFIC MODEL

A. INTRODUCTION

In this chapter we analyze well-known traffic patterns in WSNs, describe the

advantages of the cluster-based over the one-hop and two-hop design architecture, and

the correlation between reports generated from different sensor nodes. In addition, we

present some basic data aggregation methods used in WSNs and finally we propose

an algorithm for the cluster-head election based on fuzzy logic theory.

B. TRAFFIC PATTERNS IN WIRELESS SENSOR NET-
WORKS

In general, traffic patterns in WSNs can be based one a one-hop or multi-

hops design architecture. In a one-hop scenario, data from the nodes are forwarded

directly to the base station. As for the multi-hop scenario, traffic patterns can be

further subdivided based on the number of transmissions and reception sensor nodes

and whether any processing procedure (i.e., aggregation) is applied in the network.

According to [12], traffic patterns in WSNs can be categorized as local communi-

cation, point-to-point routing, aggregation, convergence or divergence. A schematic

representation of all traffic patterns is shown in Figure 10.

Aggregation

Local Traffic

Point−to−Point

Convergence

Divergence

Figure 10. Traffic Patterns in WSNs [12].
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Traffic patterns describe different types of communication procedures between

sensor nodes. For example, local communication is used when a node sends data to

its neighbors. Point-to-point routing is used in wireless LAN (Local Area Network)

so that a sensor node can send data to another sensor node. In an aggregate traffic

pattern, some sensor nodes send data to a cluster-head or an intermediate sensor

node after applying aggregation functions. In that case, only the aggregated values

of data are forwarded, instead of all the data values. Similar to the aggregate traffic

pattern, in a convergence traffic pattern, all the data from sensor nodes is send it to

a relaying node and then forwarded to the next sensor level, or base station, without

applying any aggregation function. Finally, a divergence traffic pattern is used when

a sink node or base station sends control messages or queries to sensor nodes. The

advantages of the cluster-based design architecture is described in next section.

C. CLUSTER-BASED HIERARCHICAL DESIGN IN WIRE-
LESS SENSOR NETWORKS

The objective of each traffic model in WSNs is to minimize the delay for

packets propagating through the network and to reduce the energy consumption and

thus maximize the lifetime of the network. A cluster-based hierarchical design in

combination with efficient data aggregation is a good consideration for WSNs. This

design is appropriate for WSNs that consist of a great number of sensors. A simple

one-hop design is inappropriate for WSNs. Given that a sensor node has limited

power resources and the loss of energy in a transmission is proportional to the square

of distance, d2, from the base station, the sensor may not be able to communicate

with the base station. A simple case is shown in Figure 11.

For a multi-hop design, the data from each sensor node is forwarded to the

base station following a path designated each time by the routing protocol in use.

The drawbacks in this case are high latency in the network, since a packet needs

much time to reach the destination, and, as some sensor nodes are closer to the base

station, designation of nodes as relays for the rest of the network. The latter can drive
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Figure 11. One-Hop Design.

the relaying nodes to an early death, causing degradation of network performance. A

simple multi-hop architecture is shown in Figure 12.

Sensor Node

Base Station

Figure 12. Multi-Hop Design.

In cluster-based design architecture, data is first collected at the cluster-head

and then fused and forwarded to the next cluster layer toward the final destination.

In this case, the data from each sensor travels shorter distances, reducing the total

latency in the network. In addition, aggregation is taking place only at the cluster-

heads saving energy for all the non-cluster-head nodes, since additional processing is

not required at sensors. A cluster- based design is shown in Figure 13. Next section

describes the spatial and temporal correlation between nodes’ reports in WSNs.
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Figure 13. Traffic Patterns in WSNs.

D. SPATIAL AND TEMPORAL CORRELATION IN WSN

WSNs are characterized as highly dense, since a great number of sensor nodes

are required in order to detect an event. Since many sensor nodes collect information

from the same event, data collected at an intermediate sensor node is high correlated.

This type of correlation caused by the high density of sensor nodes is called spatial-

temporal correlation. The methods used to model WSNs make assumptions about

the distribution of data, the topology, and the density of the network. For example,

the authors in [13] assume that the observed phenomena in WSNs can be modeled

as independent Gaussian random variables. The authors in [14] use a mathematical

model to generate synthetic data traces for modeling the observed events. In [13], the

model for gathering multiple-sensor information is shown in Figure 14, where a sink

SinkEvent

S2[n]

S3[n]

S1[n]

Si[n]

Sensor

Network

N1[n]

N2[n]

N3[n]

Ni[n]

Figure 14. Correlation Model in WSNs [13].
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node is responsible for reconstructing the signal based on the noisy signal of each

sensor. In [14], two different methods are used to model the statistical properties

of the network, as shown in Figure 15, where the data at central node C can be

C[0,0] C[0,0]R

Semi Circular Model Quarter Circular Model

Figure 15. Methods of Model Data in WSNs [14].

captured from the nodes placed in a circular or quarter-circular area, respectively.

The two above models use different approaches to determine how the correlation

between sensor data changes based on the parameters of the model. Both approaches

converge to the same two basic conclusions about the correlation between sensor

data. First, as the distance between a representative node (a sensor node which

sends event data to the sink node) and an event increases, the representative node

sends increasingly inaccurate data to the sink. Second, the two nodes collect less-

correlated data as the distance between nodes increases. The above two conclusions

are important considerations for data aggregation methods, since both can be used

to decrease the distortion at the sink, or central node, eliminating congestion in the

network. The next section focuses on some special data aggregation methods applied

in WSNs.

E. DATA AGGREGATION IN WIRELESS SENSOR NET-
WORKS

Wireless sensor networks have limited operational characteristics, because they

consist of a large number of small devices, each with limited resources (power, process-

ing power, memory). To overcome these limitations, data aggregation methods can

be applied in WSNs. There are three primary aspects of data aggregation in WSNs:
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different types of aggregation related to networking, conditions that a model must

satisfy for an optimal aggregation result, and different methods of aggregation.

1. Types of Aggregation in Wireless Sensor Networks

Data aggregation, or data fusion, is a function that combines data from differ-

ent sensor nodes with intermediate nodes in order to eliminate redundancy. In other

words, data aggregation methods try to eliminate traffic overload and collisions in

the network. The types of aggregation and their subcategories, according to [15], are

shown in Figure 16, where at the first level there are two types of data aggregation,

Aggregation
Methods

Centralized Distributed

Distributed
Cenerally In−network

Partial Packet Merging

Figure 16. Data Aggregation Methods in WSNs [15].

centralized and distributed. In centralized aggregation, only the query sender per-

forms the aggregation, whereas in distributed aggregation any sensor node, except the

query sender, can perform aggregation. At the second level, in a general distributed

method, each sensor node after receiving a query request can perform aggregation. In

an in-network method, only some central sensor nodes perform aggregation. A cen-

tral node, except the query sender, executes the aggregation, examining the content

of each incoming traffic packet and eliminating any redundant information included

among the packets. According to [16], in-network aggregation can be categorized as

packet merging, or partial aggregation. In a packet merging, packets with relevant
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information can be forwarded as a large packet instead of small multiple packets. This

method reduces the overhead caused by a multiple number of headers being applied

at the beginning of a traffic packet. For example, if UDP (User Datagram Protocol)

is used at the transport layer shown in Figure 1, there is an eight-byte header for each

UDP packet. A schematic representation of packet merging is shown in Figure 17.

C

HEADERA PAYLOAD A HEADERB PAYLOAD B HEADERC PAYLOAD C

HEADER PAYLOAD A PAYLOAD B PAYLOAD

Figure 17. Packet Merging Technique [16].

According to [17] and [1], a WSN can use algebraic aggregate operations such

as COUNT, MIN, MAX, SUM, MEAN, and AVERAGE. An aggregation process

using an operation function f (COUNT, MIN, MAX, SUM, MEAN, and AVERAGE),

is shown in Figure 18. Each sensor node (A,B,C or D) stores two numbers in a ordered

A

B

C

(V1,C1)

D

(V3,C3)
(V2,C2)

f(<V1,C1>,<V2,C2>)=<V1+V2,C1+C2>

(V4,C4)

f(<V4,C4>,<V3,C3>,<V1+V2,C1+C2>)=<V1+V2+V3+V4,C1+C2+C3+C4>

Figure 18. Partial Aggregation in WSNs [17].

two-tuple, the first is the observed value (Vi) and the second one is the number of

observations (Ci). A message packet generated for each sensor includes the above two
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values and is forwarded to the next hop. At the next hop, the aggregated function,

is executed as follows,

f(< Vi, Ci >, < Vj, Cj >) =< Vi + Vj, Ci + Cj > (III.1)

in which the first part express the summation of the sensors’ observations and the

second part is the total number of sensors’ observations. At the final destination,

which can be at a sink node or a central sensor node, the final value for the observed

variable (i.e., pressure) will be the ratio V/C where V and C are the summation of

the observations and the total number of observations respectively. This technique is

called partial aggregation because the results at intermediate sensor nodes are used to

calculate the final result. Thus, computation power is distributed among intermediate

central nodes.

2. Effective Aggregation in Wireless Sensor Networks

As mentioned in the previous sections, the lifetime of the network increases

as the number of packets transmitted from each cluster- head is reduced. Assuming

that a WSN is used to measure periodic environmental variables (e.g., temperature),

let T be the number of packets needed to be forwarded through the network up to

the base station. In addition, let TA be the number of packets flooding the network

when an aggregation algorithm is applied. According to [18], the aggregation gain is

equal to:

G = 1− TA

T
. (III.2)

The aggregation gain can be used to estimate and measure the effects of applying

aggregation in WSNs in terms of total traffic reduction in the network.

Three basic conditions must be satisfied to ensure a traffic model that includes

aggregation algorithms has optimum performance. First, traffic generated from sensor

nodes must propagate through common central nodes to the final destination which is

h hops away from the former. Second, the energy spent on the aggregation function

is lower than the energy spent sending messages to the next layer. Finally, data
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aggregation is a procedure that consumes time. The time spent during the aggregation

function is called aggregation delay, ta. The total aggregation delay, from the lower

level to the base station, must be lower than a message delay t, where t depends on the

application requirements. In other words, the following equation must be satisfied:

h∑
n=1

ta[n] ≤ t. (III.3)

3. Data-Centric Aggregation Methods

Wireless sensor networks have many applications, each demanding different re-

quirements. It is obvious that they require different data aggregation methods, since

each application has unique characteristics (e.g., target tracking and pressure moni-

toring). According to [19], in general there are three data aggregation methods: data

summarization, data clustering, and pattern fitting. In data summarization methods,

only different summarization functions are used (mean, max, average, median, stan-

dard deviation), to describe an event. A simple example is illustrated in Figure 19.

Figure 19 shows all sensor nodes observations for three different clusters, each

consisting of ten sensor nodes for variable temperature and the corresponding values

obtained after applying the “median” summarization function.

Sensor nodes are able to monitor real-time events and handle a large amount

of information for the user. Data generated from different sensor nodes form data

streams. The data streams carry large amounts of information and change rapidly;

there is limited space for storing them in the network. Due to these limitations,

data-mining techniques are commonly applied to data streams. One such method

is clustering, which groups the data into clusters, based on some metrics using the

K-means algorithm [20]. The K-mean algorithm [21] is illustrated in Figure 20.

The algorithm accepts as input a matrix of data points and the number of

clusters. The algorithm has three matrices as outputs: centroid, Euclidean distance

variance, and clusters weights. Initially, k centroid are randomly selected and then
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Figure 19. Example of Data Summarization in WSNs.

clusters are formed based on the minimum distance of each point from all centroids.

The algorithm terminates when there is no change in the cluster formation. This

method can be used for data summarization on each cluster-head for each cluster.

The algorithm takes as input the data points for a cluster and a number which

express the desired representatives for the cluster. The cluster-heads send the output

k -cluster centers [19] to the base station or to the sink node. An example of data

summarization finding k (where k = 5) representatives using the K-means algorithm

is shown in Figure 21, where representatives of data items are shown by the symbols

+C1, +C2, up to +C5.

An alternative way for data minimization in WSNs similar to the K-means

algorithm is the fuzzy c-means (FCM) algorithm [22]. The fuzzy c-means algorithm

is a clustering algorithm in which each data point is assigned to a cluster. The degree

of membership of each data point in a cluster is specified by a membership grade.

First, the algorithm is initialized similarly to the K-means algorithm by randomly
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Figure 20. K-means Algorithm [21].

picking the cluster centers. Next, the algorithm starts an iterative procedure until a

user-specified objective function becomes constant. The objective function expresses

the distance between each data point and the cluster center, multiplied by a weight

factor, which is the membership grade of each point in which the cluster belongs. The

algorithm terminates when there is no change in cluster formation (i.e., the objective

function becomes constant). A data minimization example using the fuzzy c-means

algorithm is shown in Figure 22. In the example above, the algorithm is applied to

two-dimensional data and for the number of clusters k equal to two. The two cluster

centers are designated using the two special characters (X and O). Figure 23 plots

objective function values and describes the clustering process. The algorithm clearly

terminates after the sixth iteration. In both the K-means and the fuzzy c-means

algorithms, the cluster centers correspond to data and the cluster heads to sensors,

respectively.

Finally, pattern fitting can be used for data aggregation in many applications

[19], as sensors are able to extract patterns that describe data changes. A typical

example is a case of temperature monitoring inside a gas turbine. Data collected

from sensors periodically defines patterns such as decreasing values, increasing values,
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constant values, a sudden fall, or a rise. Patterns can then be forwarded to the base

station or sink node instead of all the observed data values. Different patterns are

shown in Figure 24. The following section includes a proposed algorithm for the

cluster-head election based on fuzzy logic theory.

Sudden Rise

Constant Increasing

Decreasing

Sudden Fall

Figure 24. Example of Pattern Matching in WSNs [19].
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F. CLUSTER-HEAD ELECTION BASED ON THE FUZZY
LOGIC THEORY

Many techniques exist for electing cluster-heads in a WSN, depending on the

architecture design of each algorithm [23], [24]. In this section, an alternative way to

elect cluster-heads in WSNs is presented according to [25].

1. Fuzzy Logic Theory

In general, fuzzy logic is a multivalued logic, by which intermediate values

can be defined using expressions such as true/false, high/low, below/above, etc. In

WSNs, fuzzy logic methods are used because they require less computational power

than conventional mathematical computational methods, they require few data sam-

ples in order to extract the final result, and they can be effectively manipulated since

they use human language to describe problems. The most common fuzzy logic in-

ferences are the Mamdani and Tsukamoto-Sugeno methods, each of which includes

four steps: fuzzification, rules evaluation, combination or aggregation of rules, and

deffuzzification. During the fuzzification phase, each input variable is assigned to

each of the appropriate fuzzy sets and the fuzzified inputs are then applied to the

antecedents of fuzzy rules to evaluate the output rules. The next step is to combine

all the output rules, a process known as unification, finally, the latter are deffuzzified

in order to extract a numerical value as an output. Different deffuzzification tech-

niques exist, but the most commonly used with Mamdani and Tsukamoto methods

are the centroid and the weighted average, respectively. The centroid method tries

to determine the point at which a vertical line slices the combined set into two equal

parts. This point is known as the center of gravity (COG) and its mathematical

expression is shown below:

COG =
(
∑

µa(x) ∗ x)∑
µa(x)

, (III.4)

where µa(x) is the membership function of fuzzy set A for the crisp value x. The

weighed average (WA) method calculates a defuzzified value using the following math-
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ematical expression,

WA =
µ(x1)× x1 + µ(x2)× x2 + µ(x3)× x3 + ..... + µ(xi)× xi

µ(x1) + µ(x2) + µ(x3) + .... + µ(xi)
, (III.5)

where µ(xi) is the fuziffied input corresponding to the appropriate crisp value xi for

each input fuzzy set. The election of cluster-heads requires a new fuzzy expert system.

In general, the steps for developing a new fuzzy expert system are: define appropriate

linguistic variables, determine the fuzzy sets, define the rules, encode the fuzzy sets

and rules in order to perform fuzzy inference, and, finally, evaluate the system. The

linguistic values are the input variables to the system, while the fuzzy sets can have

different shapes (triangular, trapezoid, gaussian, etc.). The total number of rules

depends on the number of input variables according to the rule nk where k is the

number of input variables in the system and n is the number of membership functions

of each fuzzy set. In order to perform similar fuzzy inference in the system of this

thesis, we used the Matlab fuzzy logic toolbox [26] and the Java fuzzzyJToolkit [27]

development tool.

2. A Simple Example of a Mamdani and Tsukamoto
Fuzzy Inference Method

The following example describes step-by-step the Mamdani and Tsukamoto

fuzzy inference methods for a simple two-input and one-output problem. Assume

that the rules are as shown in Table II, where x and y represent the input values and

Rule Rule description Rule description using crisp values
1 if sensor is far or has low power then reports are inaccurate if x is A3 or y is B1 then z is C1
2 if sensor is close and has medium power then reports are normal if x is A2 and y is B2 then z is C2
3 if sensor is very close then reports are reliable if x is A1 then z is C3

Table II. Rules for a Two-input One-output problem.

z the output value. The first step in the Mamdani fuzzy inference method is to assign

a degree of membership for each input value to the appropriate defined fuzzy sets, as

shown in Figures 25 and 26.
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Figure 26. Fuzzification assignment for the Power input variable.
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The next step is the rule evaluation, where the fuzzified inputs are applied

according to certain appropriate rules. Usually, in cases where a fuzzy rule has more

than one conditional element (antecedent), an AND (minimum) or OR (maximum)

operator is used to estimate a number that describes the result after the rule evalua-

tion, as shown in Figure 27.

  

Y is B1(0.28) then Z is C1(0.28)
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Figure 27. Mamdani Rule Evaluation Process for crisp x1 = 62m and y = 34mW .

The third step of the Mamdani fuzzy inference method is the aggregation of

results after rules have been applied. All output rule values are combined into a new

fuzzy set, as shown in Figure 28.
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Figure 28. Aggregation of rule outputs.

The final step is the defuzzification process, by which the aggregated new fuzzy

set is converted to a number. The method used to implement this conversion is called
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the centroid technique, which is described by equation (III.4) and presented in Figure

29. The steps are the same for the Tsukamoto inference fuzzy method steps, but
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Figure 29. Mamdani Defuzzification Process. For the crisp values of 62m and 34mW
the center of gravity is computed as 31.67.

there are two basic differences compared to the Mamdani fuzzzy inference method.

One difference is that the Tsukamoto fuzzy method uses single tones to represent

the membership function. The other difference is that a weighted average method is

applied to calculate the defuzzified value. These differences are presented in Figures

30 and 31.
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Figure 30. Aggregation of rule outputs.

3. Fuzzy Logic Method Representation

The selection of cluster-heads can be implemented either at the base station or

at any central node that has more power resources than a conventional sensor node.

During the fuzzification phase there are three input variables: energy at each node,

density of sensor nodes around each node, and the number of times (frequency) each
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Figure 31. Tsukamoto Defuzzification Process.

node has already been chosen as a cluster-head. The fuzzy sets for each variable and

the linguistic variables used to describe each variable are shown in Figures 32 to 34.
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Figure 32. Fuzzy set of variable Energy.

There is only one output value, named chance expressed in percentage; the

sensor node with the greatest assigned value of change is chosen to be a cluster-head.
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Figure 33. Fuzzy set of variable Density.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Frequency

D
eg

re
e 

of
 m

em
be

rs
hi

p

below equal above

Fuzzy set of variable Frequency

Figure 34. Fuzzy set of variable Frequency.

36



The fuzzy set for the variable chance and the linguistic variables used to describe it

are shown in Figure 35.
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Figure 35. Fuzzy set of variable chance.

Since there are three input variables and each of them has three membership

functions, the total number of rules is equal to 33 = 27. The fuzzy inference system

(FIS) is shown in Figure 36, where there are three input variables (each with three

linguistic values), one output value, and twenty-seven rules. An example of the rule-

view for a single combination of three input variables is shown in Figure 37, where

for energy value equal to 50mW , density equal to 10 sensor nodes, and frequency

equal to 5 times, there is a 50% chance for the sensor node to be a cluster-head.

The following example simulates a cluster-head election procedure at the base station

using the Java fuzzyjToolkit. The input variables are energy, density, and frequency,

taking values between spaces similar to the corresponding example using the Matlab

fuzzy logic toolbox. The fuzzy sets for each variable and the linguistic variables used

to describe each variable are shown in Figures 38 to 41, respectively.
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System clusterhead: 3 inputs, 1 outputs, 27 rules

Energy (3)

Density (3)

Frequency (3)
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clusterhead

(mamdani)
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Figure 36. The Fuzzy Inference System for cluster-head election.

Figure 37. The ruleview of a single combination of inputs for energy of 50mW , density
of 10 nodes and frequency of cluster selection of 5 times. The resulting 50% chance
of selection is highlighted on the right.
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Figure 38. Fuzzy set for variable Energy.
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Figure 39. Fuzzy set for variable Density.
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Figure 40. Fuzzy set for variable Frequency.
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Table III, lists the output fuzzy set chance based on the Mamdani fuzzy logic

algorithm for the three input fuzzy variables, energy, density, and frequency. Results

show that the maximum value of the output fuzzy variable chance is 92.265%. The

algorithm can run on a component placed either on the user or on a sensor node

that has a global knowledge of the network. Note that the implementation of the

algorithm on the network component (either the user or a new sensor node) is not

considered in this thesis. It is left as an issue for future work after the implementation

of the two-hop hierarchical network design is completed.

Power[mW ]
Frequency Density 10 20 30 40 50 60 70 80 90
2 2 8.366 15.005 35.236 44.646 48.557 51.003 56.493 70.217 76.858

4 10.339 16.38 36.305 45.611 49.464 51.806 56.514 70.217 76.824
6 21.617 28.362 36.689 49.082 54.616 57.542 62.503 70.217 76.824
8 21.674 28.368 36.708 50.321 56.298 59.313 64.176 71.83 76.861
10 22.288 28.824 37.104 50.743 57.228 60.223 64.943 72.481 77.616
12 25.25 31.107 39.084 52.763 59.079 62.694 66.837 73.807 78.958
14 25.219 37.718 44.997 58.334 64.035 66.91 72.399 77.822 82.85
16 13.137 24.502 52.605 65.943 71.188 73.426 77.29 85.682 90.611
18 13.061 24.502 52.605 66.032 71.251 73.474 77.29 85.728 92.265

4 2 7.044 10.423 22.276 31.936 35.944 39.723 46.586 58.89 64.486
4 8.423 15.018 27.631 37.186 41.855 45.479 46.997 57.928 64.313
6 9.354 15.018 35.257 44.652 48.604 51.055 51.926 57.928 64.313
8 7.062 14.859 35.333 46.639 49.692 51.503 52.971 59.648 64.492
10 7.371 15.255 35.679 46.903 50.184 51.992 53.633 60.583 65.395
12 8.913 17.268 37.424 48.213 51.464 53.619 55.764 63.2141 67.638
14 13.063 17.517 37.399 47.635 52.098 55.067 59.961 67.397 72.449
16 25.566 30.195 37.399 47.635 52.098 55.067 59.961 73.891 79.05
18 35.157 40.275 46.654 34.593 51.509 53.667 59.961 73.924 80.667

6 2 6.726 9.877 21.564 31.085 31.188 31.678 37.209 48.736 55.182
4 7.882 14.597 27.133 36.396 36.488 36.924 38.602 48.84 52.116
6 7.882 14.597 34.926 44.11 44.164 44.419 45.367 48.84 52.116
8 6.731 14.432 34.998 46.331 46.373 46.549 46.21 50.139 55.189
10 6.735 14.438 35.003 46.414 49.487 49.664 50.419 56.414 61.541
12 6.739 14.438 35.003 46.414 49.512 51.498 52.919 59.59 64.377
14 9.878 14.661 34.944 45.041 47.507 52.101 57.621 64.656 69.271
16 21.318 26.688 34.944 45.041 47.507 52.101 57.621 71.853 76.78
18 31.055 36.255 44.11 47.177 48.788 51.505 57.621 71.881 78.972

8 2 16.975 17.737 10.036 9.947 10.019 10.416 16.438 36.384 46.456
4 16.954 22.46 14.885 14.814 14.874 15.205 16.597 36.384 46.429
6 16.954 22.46 27.076 27.094 27.165 27.556 29.065 36.384 46.429
8 16.975 22.46 27.353 36.713 36.798 37.225 38.9 45.609 46.461
10 16.975 22.46 27.353 36.822 41.485 41.919 43.56 49.581 50.5
12 16.981 22.46 27.353 36.822 41.523 45.509 47.009 51.995 52.954
14 17.734 22.481 27.353 36.842 41.573 45.588 53.787 56.804 57.792
16 9.951 14.714 27.353 36.842 41.573 45.588 53.787 63.093 64.716
18 9.903 14.714 27.353 36.822 27.042 45.519 53.787 63.225 69.477

Table III. The fuzzy output Chance value for different values of the three input fuzzy
variables, in (%).
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In Chapter III we focused on well-known traffic patterns, the advantages of

a cluster-based design over the one-hop and multi-hop design architectures, and the

different types of the data aggregation methods in WSNs. In addition, we proposed

an algorithm for cluster-head election based on the fuzzy logic theory. In Chapter

IV some proposed queuing models appropriate for the WSNs are presented based on

classic queuing theory.
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IV. QUEUING MODELS

A. INTRODUCTION

In this chapter we present three appropriate queuing models for WSNs. The

data generated from sensor nodes each time they detect an event is carried in data

stream packets. The latter forwarded to cluster-heads or to a sink node following

different queuing schemes. In this chapter we propose different queuing schemes that

are able to effectively manipulate network traffic.

B. PACKET TRAFFIC MODELING IN WIRELESS SEN-
SOR NETWORKS

WSNs are generally deployed to detect an event such as target movement,

battlefield actions, and monitoring environmental phenomena. The information col-

lected during observations must be transformed into an appropriate type of message

in order to be delivered to the user. The methods used to transform different types of

information depend on the application and the users’ requirements (accuracy, delay,

fault tolerance).

According to [28] and [29], there are three data delivery models: continuous-

based, event-based, and query- or observer-based. In a continuous- based model, sensor

nodes exchange data using a predefined data rate. Such a model is applicable in

cluster-based or multi-level cluster-based sensor networks. A continuous-based model

is used in cases in which sensor nodes exchange real-time data, images or video,

and non-real-time data (i.e., periodic collection of data). In an event-based model,

sensor nodes exchange information only in cases in which the observed event is in

progress. In such models, time delay should be minimized, since actions should be

taken as soon as possible. An emergency message of fire in a laboratory is an example

of such information. In the query- or observer-based model, sensor nodes exchange

data only in cases in which a query from the user was advertised. A control message

generated from the user (the sink, or base station) informing sensor nodes of changes in
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configuration variables (i.e., data rate) is an example of a query-data delivery model.

All the above data delivery models are examined from an application perspective.

Packet traffic in WSNs is characterized either as CBR ( Constant Bit Rate), or

VBR (Variable Bit Rate) assuming that the data sources follow a Poisson distribution.

Generally, packet traffic can be characterized as CBR (constant bit rate) for real-time

events (data, video, voice) and periodic data events. Event-based data modeling (i.e.,

target detection) and query-based data cannot be modeled as CBR nor as Poisson

because they assume heavy-burst data sources.

Assume that the packet traffic in a WSN is characterized as CBR and the

network consists of N sensor nodes uniformly distributed in an area. Also assume

a homogeneous WSN with K clusters uniformly distributed, then each cluster has

N/K sensors. Each cluster assumes one cluster-head each time, which means that

there are N/K−1 remaining sensor nodes. The remaining nodes at each cluster send

data to the cluster-head. Assuming that each sensor has a constant data rate Ri then

each cluster-head has an incoming data traffic rate given by equation (IV.1).

Rm =
m∑

i=1

Ri, (IV.1)

where m = N/K − 1 and the outgoing data rate of each cluster-head depends on the

communication scheme used and the data aggregation method. Now assume that the

packets generated by a cluster-head and packets delivered from each sensor node of the

cluster follow a Poisson distribution with rate λk. Following the same assumptions as

in the case of the CBR data traffic related to the topology of the network (uniformly

distributed clusters and sensors) and since each sensor generates traffic packets with

Poisson distribution, the packet arrival rate for a cluster-head is given by equation

(IV.2),

λi = λ0 +
m∑

k=1

λk, (IV.2)

44



where m = N/K − 1 and λ0 are the packets generated from the cluster-head itself.

The mean value for the total number of packets is given by the equation (IV.3),

X i = λ0 · t +
m∑

k=1

λkt. (IV.3)

As t increases, the number of traffic packets is equal to the mean value of traffic pack-

ets. The next section focuses on the time division multiple access schemes (TDMA)

used in WSNs for assigning time periods during which a sensor node can send its

data.

C. DELAY ANALYSIS IN WSN USING TIME DIVISION
MULTIPLE ACCESS SCHEMES

To effectively analyze appropriate queuing models in wireless sensor networks,

we used the assumptions presented in the previous section related to the packet traffic

at each sensor node and at cluster-heads. Consider a cluster formation that consists

of N sensors, each transmitting a packet of L bits to the cluster-head. Given a

transmission data rate of R, the transmission time required for each packet is equal

to T = L/R. Assume that a Time Division Multiple Access (TDMA) scheme is used

to assign a time period (time slot) to each sensor node in which it can transmit its

packets. In a time period, called a frame, the assignment of time slots to each sensor

node follows a periodically repeating pattern. A typical TDMA slot allocation for a

cluster consisting of eight sensor nodes is shown in Figure 42,

 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

FRAMEFRAME

t(time)

time slot

Figure 42. An example of TDMA slot allocation in WSNs [30].
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where each frame consists of eight time slots, one for each sensor node of the cluster.

The time T is equal to the slot time and the total duration of a frame is equal to

Tf = NT , where N is the number of sensor nodes in the cluster. Assuming the packet

generation process at each sensor node is independent, the queuing behavior at each

cluster-head is also independent for each sensor node. The total delay in the system

is caused by three components: (1) the transmission time for each packet, (2) the

time difference between the packet generation time and the end time of each frame,

and (3) the queuing time (time needed for transmitting the already queued packets

in the system). The delay time due to first component is equal to T and the delay

time due to the second component is equal to 0.5Tf , since, all the frames have equal

size. Assuming that the packet arrival process at the cluster-head follows a Poisson

distribution with an arrival rate given by equation IV.2, then according to [30] the

queuing time is equal to the queuing time in a M/G/1 model with a service time

x̄ = Tf . The average queuing time in a M/G/1 system is given by equation IV.4,

Wq =
W0

1− ρ
=

ρ

2(1− ρ)
x̄ =

ρ

2(1− ρ)
Tf =

ρ

2(1− ρ)
NT, (IV.4)

where ρ = λiTf . The total delay TD is the summation of the three (3) time-delay

components and is given by

TD = 0.5Tf + Wq + T = 0.5NT +
ρ

2(1− ρ)
NT + T = T [1 +

N

2(1− ρ)
]. (IV.5)

In the M/G/1 system at the cluster-head, the throughput of the system, α, is identical

to the load factor ρ since the throughput is defined as the summation of transmitted

bits during the time a server is busy. Using equation IV.5 and substituting ρ = α,

the final expression for the expected time delay TD is given by

TD = T [1 +
N

2(1− α)
], (IV.6)

and the normalized packet delay TD is given by

TD =
TD

T
= 1 +

N

2(1− α)
. (IV.7)
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Figure 43 shows the expected normalized packet delay for different values of

the throughput (load factor) and the number of sensor nodes in the cluster. The

expected packet delay is inversely proportional to the throughput and proportional

to the number of sensor nodes in the cluster.
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Figure 43. Delay vs. Throughput in a cluster using a TDMA allocation scheme [30].

D. DELAY ANALYSIS IN WSN USING DYNAMIC
COLLISION-FREE TIME ALLOCATION SCHEMES

The previous section considered a queuing model for hierarchical structured

wireless sensor networks, in which the load generated at each sensor node is the same

and is described by a Poisson distribution with the arrival rate λ. In some cases,

the traffic load generated from each sensor node in the cluster is not the same for all

sensor nodes (i.e., different arrival rate or a different type of distribution). In such

cases, static time allocation schemes (i.e., TDMA) do not efficiently allocate time

for sensor node transmission. Instead, dynamic time allocation schemes are used

to overcome the drawback of static time allocation schemes. Using a dynamic time
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allocation scheme in a cluster, the channel allocation for each sensor node changes

based on the traffic load demands of each sensor node. An appropriate dynamic time

allocation scheme is the Mini Slotted Alternating Priority scheme (MSAP) [30].

1. Mini Slotted Alternating Priority Schemes in WSNs

The MSAP scheme is based on the agreement between the sensor nodes of each

cluster. The agreement between sensor nodes is a two-step procedure. In the first

step we select a type of priority structure, that designates which sensor node is ready

to transmit information. In the second step we pick the sensor node with the highest

priority among the group of sensors formatted in the previous step. According to

[30], there are three different priority structures: 1) fixed structures, 2) Round-Robin

structures, and 3) alternating priorities.

Assume that there are N sensor nodes in the cluster numbered between 0

and N − 1. The order in which sensor nodes are allowed to transmit using a fixed

priority structure is 0, 1, ....N − 1, which means that the sensor node i always has

greater priority for transmission than i + 1. The transmission order of the Round-

Robin priority structure is i + 1, i + 2, .....i + N , using modulo N arithmetic ([i mod

N], [(i+1)mod N]+1,......, [(i+N-2)mod N +1,i]. Given a bidirectional transmission

of two (2) arbitrary sensor nodes, this priority structure ensures that each sensor

node from the remaining N − 2 sensors will have the opportunity to transmit at least

one time during the former transmission time. The transmission order of alternating

priority structures is i, i+1, ....i+N +1. This priority structure allows a sensor node

to transmit all its packets before the channel is reserved for transmission by another

sensor node.

After the first step is completed, the MSAP scheme implements the technique

shown in Figure 44 in order to detect the sensor node with the highest priority, where

the time slot consists of three parts. The first part consists of (N − 1) small slots

of duration τ . The duration τ is the maximum propagation time for a signal to

travel from a sensor node to the cluster-head. The second part is the data (packet)
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Figure 44. MSAP Slot time allocation [30].

transmission of time duration T . The third part is an extra-small slot τ and is the

time period between the end of packet transmission and reception. According to [31],

during a time slot all N sensor nodes are queued based on the priority structure.

Then, the sensor node with the highest priority transmits data immediately, if ready

to do so. The transmission for the following time period of (N −1)τ does not contain

any information, so after time τ all other sensor nodes sense that the channel is not

empty and do not transmit up to the end of the time slot. Meanwhile, the sensor

node with the highest priority after time (N − 1)τ starts to send data for time period

T . A sensor node with ith priority, where 1 ≤ i ≤ N − 1, senses the channel for

time period (i− 1)τ and starts to transmit at time iτ , if the channel is idle, following

a similar procedure as that described for the sensor node with the highest priority.

When the ith sensor node is not ready to transmit, the sensor node with the next

highest priority waits up to the end of the slot time, and the procedure is repeated

in a similar manner.

2. Expected Delay Of Mini Slotted Alternating Prior-
ity Schemes in WSN

We can follow the analytical derivation using the packet delay distribution to

derive the general expression for the expected normalized delay of a system imple-

menting a MSAP time allocation scheme such as a one-hop cluster-based wireless

sensor network [31]. We assume a simple M/G/1 queuing model implementing fixed

priority for service. Note that the only difference from the standard M/G/1 queuing
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model is that the next customer to be served is the customer with the next highest

priority. In addition, the model implements a non-preemptive discipline. A non-

preemptive discipline is a service where a high-priority sensor node is not interrupted

if another high-priority sensor node sends packets while the first is in service. An ex-

ample of such a system is shown in Figure 45. Assume that at time t1 the kth sensor

server

low

high

k

λ m

λ k

λ n

Figure 45. Queuing model for a cluster using priorities.

node sends packets to the cluster head. Then E[t1] is the expected service time of the

kth sensor node, E[t2 + .....+ tn] is the expected service time for all packets from other

higher priority sensor nodes in the system when the arrival of the kth node enters the

service, and E[tn+1 + .... + t] is the expected time for all packets from other higher

priority nodes in the system that arrive after the arrival of the kth node and before

starting service. The average time spent W k
q in the queue for the arrival of packets

from the kth sensor node is given by

W (k)
q = ρE[t1] +

k∑
i=1

L(i)
q E[t1] +

k−1∑
i=1

λiW
(k)
q E[ti]. (IV.8)

where L
(i)
q = λiW

(i)
q (Little’s formula). It can also be formed as in equation IV.9

shown below, using the formulas ρi = λiE[ti], ρ = λE[t], and λ =
∑N

i=1 λi.

W (k)
q (1−

k−1∑
i=1

ρi) = ρE[t1] +
k∑

i=1

W (i)
q ρi. (IV.9)
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Equation IV.9, using the term Ak =
∑k−1

i=1 ρi, can be written as,

W (k)
q = (

(1− Ak−2)

(1− Ak)
W (k−1)

q , (IV.10)

which leads to

W (1)
q =

ρE[t1]

(1− A1)
, (IV.11)

W (k)
q =

ρE[t1]

(1− Ak−1)(1− Ak)
. (IV.12)

The term E[t1] defines the expected time needed by the server to complete

the service work and is equal to E[t1] = E[t2]
2E[t]

. Substituting E[t1] into equation IV.12,

leads to the expression for the time waiting in the queue described by:

W (k)
q =

ρE[t2]
E[t]

2(1− Ak−1)(1− Ak)
. (IV.13)

The mean packet delay must be averaged over all priority sensor nodes, so the ex-

pression for the mean packet delay TD is given by

TD =
N∑

i=1

λi

λ
W (i)

q . (IV.14)

According to [30], the packet delay TD shown in equation IV.14 is equivalent to

TD = (T + Nτ)[1 +
1

2(1− ρ)
], (IV.15)

using equation (IV.13), Ak =
∑k

i=1 ρi ρ(k) = (T + Nτ)
∑N

i=1 λi, and the variable t

equal to the slot size t = T + Nτ for the MSAP time allocation scheme (Figure 45).

Substituting ε = τ/T into equation IV.15, the normalized packet delay TDnorm = TD

T

is then given by

TDnorm =
TD

T
= (1 + Nε)[1 +

1

2(1− ρ)
]. (IV.16)

Figure 46 shows the expected normalized packet delay for different values of

the throughput (load factor), the number of sensor nodes in the cluster, and the

characteristic parameter ε = 0.01. The expected packet delay is proportional to the
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Figure 46. Delay vs throughput in a cluster using MSAP allocation scheme [30].

characteristic parameter (ε), the number of sensor nodes in the cluster, and inversely

proportional to the loading factor (ρ). The following section describes an appropriate

class-based queuing model for the WSNs based on the idea of the link-sharing method

[32].

E. CLASS-BASED QUEUING MODEL IN WSNS

A wireless sensor network can be used to monitor multiple phenomena or

applications, where each one designates a different traffic flow (real-time, non-real-

time). Class-based queuing models can be used to spread different types of traffic in

wireless sensor networks in order to minimize the service time delay [33]. Class-based

queuing is also known as bandwidth allocation because it supports the allocation of

different percentages of bandwidth to different traffic types. A typical example of

class-based queuing is shown in Figure 47.

The classifier observes each time the application type or the header of each

incoming stream of packets and applies a queuing algorithm (First-In-First-Out) to
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Figure 47. Class-based Queuing Model.

assign each incoming stream to the appropriate queue. Each queue forms a traffic

class and represents a different traffic type. The scheduler serves queues following

a predefined round-robin order. The functionality of the scheduler is also shown in

Figure 47, assuming three basic different types of traffic for a wireless sensor network

(real time, non-real-time, and emergency messages). The class-based queuing model

in wireless sensor networks implements a hierarchical link-sharing mechanism [32], by

which each cluster-head is able to manipulate the allocated amount of the wireless

link bandwidth of each network. An example of a link-sharing mechanism is shown in

Figure 48, where each type of traffic forms a traffic class and the total link bandwidth

a + b+ c= 100

Traffic Classifier

Real time  a %

Non Real time b %

Emergency  Messages c %

Figure 48. Link-sharing Mechanism in WSNs.

is allocated to each of the traffic classes. The allocation of the total link bandwidth

can be assigned either by the user (static allocation) or by using a predefined algo-
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rithm based on the variations of the network conditions (dynamic allocation). The

amount of bandwidth used by each queue varies based on the network configuration.

The scheduler, when combined with a timer ensures that no class traffic consumes

bandwidth more than a predefined percentage when the network is congested. The

scheduler compares the previous time slot to the next time that the cluster-head can

send a packet from a class with the timer. Only if that time is greater than the timer

is the scheduler able to send packets of that class.

In Chapter IV we presented different appropriate queuing models for the

WSNs. The proposed models can be implemented at a cluster-head or at a sink

node based on the application and the data types of each application. In Chapter V,

we evaluate and analyze the performance of the proposed data fusion algorithms.

54



V. SIMULATIONS

A. A SIMULATION FRAMEWORK FOR HIERARCHI-
CAL WSN

The simulation of the hierarchical wireless sensor network is based on J-Sim

[34], a component-based network simulator in Java. J-Sim is an open-source simulator

thus the simulation capabilities can be extended based on the application and the

system’s design requirements. The simulation framework is based on the autonomous

component architecture (ACA).

1. Autonomous Component Architecture

The autonomous component architecture has a component as a basic entity.

For example, all features of a network (a router, a protocol, or a host) are compo-

nents. Each component can have one or more ports in order to communicate with

other components by sending and receiving data between ports. Two components are

connected if their ports are connected through a wire. If a port receives data from its

component, it will forward the data to any ports that it is connected with. In a case

where data arrives at a port generated from another component, the component of

the reception port processes the data and generates new information following rules

and methods in a contract. The contract describes how a component processes the

data and generates new data to some specific ports. The autonomous component

architecture is similar to the integrated circuits architecture, since the ports of the

components are connected in the same way as the pins in the integrated chips. The

contracts between the components designate the behavior of the components similar

to the way an integrated circuit behaves based on its cookbook [35]. The general

framework for the simulation environment used is presented next.
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2. Overview of the simulation framework

Generally, in WSNs, sensors sense events and phenomena and forward the

information to a base station (sink node). In order to simulate the previous task, J-

Sim uses three types of nodes: target nodes (generate events and phenomena), sensor

nodes (detect the events), and sink nodes (process the collected information). The

model of a typical hierarchical wireless sensor network is shown in Figure 49.
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Figure 49. J-Sim model for hierarchical WSNs.

Each component of the above model completes a different task [35]. The Tar-

getAgent component generates data and passes it to the SensorPhy component. It has

a down port (down@) which is used to forward the data to the next-lower layer. The

SensorPhy component receives the signal generated by the target node and sends it to

the sensor channel component (SensorChannel) using information related to the last

location of the target node (query port on the SensorMobility component). It also has

an up port (up@), which is used to receive data from the higher layer, and a down port

(down@), which is used to forward the data to the next-lower layer. The SensorMo-

bility component implements a moving target node and the nodetracker component
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keeps track of location information for all nodes. The SensorChannel receives the

signal from the target node and, using information related to the location of the sink

nodes provided by the nodetracker, sends the signal to the SensorAgent component.

The SensorAgent component receives the data sent by the sensor channel, computes

the specific information required by the application (signal-to-noise ratio, through-

put), and sends it to the SensorApp component. The SensorApp component collects

the data from the SensorAgent component, performs data-processing techniques, and

finally passes the resulting data to the next-higher layer (application layer). The

SensorPropagation component implements the multiple methods of signal propaga-

tion from a sender to a receiver. The simulation set-up for wireless sensor networks

using J-Sim is a three-step procedure: (1) create the topology of the wireless sensor

network, (2) implement the structure of the nodes, and (3) configure the scenario

using Tcl script language. An example of a topology for a wireless sensor network is

shown in Figure 50, where there are six target nodes and one sink node. The task of
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Figure 50. Example of a topology for a wireless sensor network.
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the target nodes is to detect a physical event (phenomenon) and report it to the sink

node (sensor or user). The physical phenomenon is an earthquake event started at a

predefined location and characterized with an initial magnitude. The magnitude of

the earthquake is decreased following an exponential distribution with a predefined

attenuation factor based on the distance from the initial location at which the earth-

quake started. When target nodes detect the phenomenon, they send data reports

(packets) to the sink node. The data are generated using an on/off scheme, with on

and off periods of time. During the on and off periods packets are sent at a fixed

rate or are not sent, respectively. The on and off time periods are defined in the Tcl

script file using the commands setOnTime and setOffTime, respectively. The payload

included for each packet stream is generated after the sampling function of a periodic

signal and is given as payload = SampleRate ·BroadcastRate. The SampleRate and

BroadcastRate are also defined in the Tcl script file using the commands setBcastRate

and setSampleRate, respectively. Based on the wireless sensor topology of Figure 50

the throughput at the sink node (n0) in bits per second (bps) for the six target nodes

as predicted by J-Sim is shown in Figure 51.

Figure 52 shows the aggregated throughput at the sink node (n0) in bits per

second (bps) for the six target nodes. Multiple target sensor reports collected at the

sink node need to be fused for optimal data handling. The proposed fusion algorithms

are based on fuzzy logic theory and presented in the next section.

3. Data Fusion Using Fuzzy Logic Theory

In this section, a fuzzy-logic-based data fusion is proposed for data processing

at a sink node in a wireless sensor network. The location information for each target

node and the quality of the received signal-to-noise ratio at the sink from the target

nodes are used to assign a weight factor to each target node related to detection

of the earthquake event. The algorithm is implemented at the SensorAppFuse and

SensorAppFusion components in the same way, as shown in Figure 49, where the

SensorApp component is replaced with the SensorAppFuse and SensorAppFusion.
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Figure 51. Throughput at the sink node from the six target nodes as predicted by
J-Sim.

Figure 52. Aggregated throughput(bps) at the sink node as predicted by J-Sim.
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The algorithm, based on fuzzy logic theory, was presented in Chapter III, using

Mamdani and Tsukamoto fuzzy inference processes. The process is completed in four

steps: (1) fuzzification of the input variables, (2) rule construction, (3) aggregation

of the rule outcome, and (4) defuzzification using the centroid and weighted average

techniques, respectively. In step (1), the appropriate input fuzzy sets are shown in

Figure 53, and 54.
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Figure 53. Fuzzy set assignment for the SNR variable.

All input fuzzy values are stored in the SensorAppFuse and SensorAppFusion

components using array vectors. At the formed array vectors, the algorithm tries

to eliminate common observations by searching for equal reported values coming

from the same target node. Then, statistical techniques are applied to the array

vectors to find essential values for the construction of the rules, such as minimum,

maximum, mean, and standard deviation, for each input fuzzy value. The numerical

limits for each input fuzzy set on the x-axis in Figure 53 and Figure 54 are based

on the previous calculated values (minimum, maximum, mean, standard deviation).

In addition, the algorithm also applies statistical methods to calculate crucial values

related to the event (i.e., magnitude of the seismic event). In step (3), the fuzzified
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Figure 54. Fuzzy set assignment for the Distance variable.

inputs are applied to the appropriate fuzzy rules. Nine rules are applied, according to

the kn rule, where n is the two input variables and k represents the three (3) different

terms (low, medium, high) for each variable. Table IV includes the nine applied

rules in the algorithm. In the final step (4), defuzzification is applied to the table

outcomes using the center-of-gravity method and the weighted average, respectively,

as described earlier in Chapter III, resulting in a single number output, which defines

a weight factor. The defuzzified number is determined using a new fuzzy variable

called State, shown in Figure 55. Encoding of the algorithm was implemented using

the fuzzyJToolkit, due to its compatibility with the Java simulation program (J-Sim).

Results of the developed algorithm are presented in the next section.

4. Simulation Results

The proposed data fusion algorithm presented in the preceding section uses two

fundamental fuzzy logic methods, Mamdani MaxMin and Tsukamoto fuzzy inference

techniques. The above two techniques were previously presented in Chapter III, and

applied at the SensorAppFuse and the SensorAppFusion components considered in
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Figure 55. Fuzzy set of output variable State.

RULE SNR DISTANCE State
1 low close StateLowLow
2 low mediu StateLowMedium
3 low far StateLowHigh
4 medium low StateMediumLow
5 medim medium StateMediumMedium
6 medium far StateMedimHigh
7 high low StateHighLow
8 high medium StateHighMedium
9 high far StateHighHigh

Table IV. The constructed fuzzy rules in SensorAppFuse component.

62



the previous section. Both techniques were applied to two different wireless sensor

topologies, each of which had a different number of target nodes (6 and 50) and

different values for the initial magnitude of the earthquake event. For each topology,

the two techniques were compared using the following characteristic values: (1) the

reported magnitude value based on the highest and the weighted average defuzzified

value, (2) the error between the initial and the estimated magnitude value based

on the highest and the weighted average defuzzified value, (3) the distance error in

estimating the location of the earthquake at the sink location based on the highest and

the weighted average defuzzified value, (4) the angle error in estimating the location

of the earthquake at the sink location based on the highest and the weighted average

defuzzified value. For example, if the event is located at (X1, Y1) and the estimated

location of the event using fuzzy logic in (Y0, Y0), then the distance error is just the

difference between the Euclidean distance of (Y1, Y1) and (Y0, Y0) at sink node location

(Ys, Ys). As for the angle error, it is the difference between the angle of (Y0, Y0) and

(Y1, Y1) at (Ys, Ys) with respect to x-axis (i.e., θ2 − θ1) as shown in Figure 56.
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Figure 56. Distance and angle error in WSN simulation environment.

Every five minutes, over a time slot called an epoch, the algorithm executes

data fusion using the above two fuzzy methods if there is data to fuse, otherwise waits
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for the next epoch, and so forth. Figures 57 and 58 show the reported magnitude

noted during the simulation for each epoch for the first scenario (6 target nodes) using

the highest and weighted average value, respectively.
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Figure 57. Reported magnitude using the highest weight value for Mamdani and
Tsukamoto techniques for the six target node scenario.

Figures 59 and 60 show the reported magnitude error noted during the sim-

ulation for each epoch for the first scenario (6 target nodes) using the highest and

weighted average value, respectively.

Figures 61 and 62 show the distance error noted during the simulation for each

epoch for the first scenario (6 target nodes) using the highest and weighted average

value, respectively.

Figures 63 and 64 show the angle error noted during the simulation for each

epoch for the first scenario (6 target nodes) using the highest and weighted average

value, respectively.
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Figure 58. Reported magnitude using the weighted average value for Mamdani and
Tsukamoto techniques for the six target node scenario.
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Figure 59. Magnitude error using the highest weight value for Mamdani and
Tsukamoto techniques for the six target node scenario.
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Figure 60. Magnitude error using the weighted average value for Mamdani and
Tsukamoto techniques for the six target node scenario.
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Figure 61. Distance error using highest value for Mamdani and Tsukamoto techniques
for the six target node scenario.
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Figure 62. Distance error using weighted average value for Mamdani and Tsukamoto
techniques for the six target node scenario.
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Figure 63. Angle error using highest value for Mamdani and Tsukamoto techniques
for the six target node scenario.
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Figure 64. Angle error using weighted average value for Mamdani and Tsukamoto
techniques for the six target node scenario.

Figures 65 and 66 show the reported magnitude during the simulation for each

epoch and for the second scenario (50 target nodes) using the highest and weighted

average value, respectively.

Figures 67 and 68 show the reported magnitude error during the simulation

for each epoch and for the second scenario (50 target nodes) using the highest and

weighted average value, respectively.

Figures 69 and 70 show the distance error for both techniques and for the

second-case scenario (50 target nodes) using the highest and weighted average value,

respectively.

Figures 71 and 72 show the angle error for both techniques and for the second-

case scenario using the highest and weighted average value, respectively.

These figures show that the Mamdani fuzzy technique gives more accurate

results and a smaller magnitude error than the Tsukamoto fuzzy technique using

the highest and the weighted average defuzzified value. The mean of magnitude
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Figure 65. Reported magnitude using the highest weight value for Mamdani and
Tsukamoto techniques for the fifty target node scenario.
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Figure 66. Reported magnitude using the weighted average value for Mamdani and
Tsukamoto techniques for the fifty target node scenario.
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Figure 67. Magnitude error using the highest weight value for Mamdani and
Tsukamoto techniques for the fifty target node scenario.
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Figure 68. Magnitude error using the weighted average value for Mamdani and
Tsukamoto techniques for the fifty target node scenario.
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Figure 69. Distance error using the highest value for Mamdani and Tsukamoto tech-
niques for the fifty target node scenario.
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Figure 70. Distance error using the weighted average value for Mamdani and
Tsukamoto techniques for the fifty target node scenario.
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Figure 71. Angle error using the highest value for Mamdani and Tsukamoto tech-
niques for the fifty target node scenario.
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Figure 72. Angle error using the weighted average value for Mamdani and Tsukamoto
techniques for the fifty target node scenario.
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error for Mamdani method is 0.25 and 2.3 using the highest and weighted average

defuzzified value, respectively (Figures 66 and 67). For Tsukamoto method, the mean

of magnitude error is 3.0 and 2.8 using the highest and weighted average defuzzified

value, respectively (Figures 66 and 67). The deviation for the magnitude error are

smaller using the Mamdani method than the Tsukamoto method using the highest

and the weighted average defuzzified value. The deviation for the magnitude error

for Mamdani method is between 0.1 to 0.5 and 1.98 to 2.63 using the highest and

weighted average defuzzified value, respectively (Figures 66 and 67). For Tsukamoto

method, the deviation of the magnitude error is between 2.3 to 3.5 and 2.75 to 3.1

using the highest and weighted average defuzzified value, respectively (Figures 66 and

67). Similar conclusions hold for the distance and angle error and confirm the more

accurate results of the Mamdani magnitude reports, since these more accurate results

come from sensors closest to the earthquake event (smallest distance).

In the second scenario for the wireless sensor network topology (50 target

nodes), the observations confirm the superiority of the Mamdani fusion method over

the Tsukamoto data fusion approach using the highest or the weighted average de-

fuzzified value. In addition, the following conclusions extracted based on the algo-

rithm can be made:

• The deviations for the magnitude report, the magnitude error and the
distance report are smaller than the corresponding deviation values of the
first scenario.

• There is a significant difference between all the reported values and the
corresponding errors using the highest and the weighted average defuzzified
value, especially for the Mamdani data fusion technique.

• Differences between all the reported values and the corresponding errors
using the highest and the weighted average defuzzified value are not
significant for the Tsukamoto data fusion technique. Although, they still
have close deviations.

• For both scenarios the two methods using the weighted average defuzzified
method give less accurate results and maximum errors.
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Figure 73 shows the throughput after data fusion from the sink node to the

next-hop component (user or a central sensor node), assuming a constant payload

during each epoch for the first scenario topology (6 target nodes). Note the substantial

improvement in performance as compared with Figure 52.

Figure 73. Throughput at sink node after data fusion for the six node scenario. Note
the substantial improvement in performance as compared with Figure 52.

Now assume that after the data fusion algorithm is applied at the SensorApp-

Fuse or the SensorAppFusion component, the sink node sends data to a user or

another central sensor node. Further, assume that for each epoch the sink sends a

packet stream of stable payload of TA and the payload during an epoch before the

data fusion is applied is the summation of the payload carried in a packet stream

generated from each target node T . Then, the aggregation/fusion gain is given by

equation (V.1).

G = 1− TA

T
. (V.1)

Figure 74 shows the aggregation/fusion gain during the simulation time for

the first scenario topology. Figure 74 measures the effects of applying data fusion in
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Figure 74. Aggregation/fusion gain for sink node at each epoch.

WSNs in temrs of total traffic reduction in the network. The size of the payload in

the packet streams generated from the sink node after data fusion depends on the

application and will be an issue for future work.

In Chapter V we analyzed and evaluated the data fusion algorithms using J-

Sim. The proposed algorithms were implemented and tested for two different wireless

sensor topologies. Results show that the Mamdani method gives better results than

the Tsukamoto approach for both wireless network topologies
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VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this thesis we first described the most common types of WSN communica-

tion designs. Next, we analyzed data aggregation methods for WSNs in highly dense

environments and evaluated well-known architecture and power consumption models

for sensor nodes. We showed that the power consumption of a sensor node is propor-

tional to the data transmission and reception rate. Furthermore, we analyzed three

data aggregation and minimization methods used in WSNs and presented the ad-

vantages of a cluster-based architecture design compared over one-hop and multi-hop

designs in performing data fusion.

After studying and evaluating the limitations of WSNs, we proposed an algo-

rithm for the election of cluster-heads based on fuzzy logic theory. Three different

potential queuing models for WSNs were presented, and we examined the relation-

ship between the time delay and throughput based on the number of sensor nodes per

cluster for each of them. In addition, we proposed and tested a new data fusion al-

gorithm based on two fuzzy logic methods: Mamdani and Tsukamoto. The proposed

algorithm was implemented and tested for two different wireless sensor topologies.

The simulation environment considered in this work was an earthquake phenomenon,

and the two proposed methods were applied to fuse data that were generated from

the target nodes. Results show that the Mamdani method gives better results than

the Tsukamoto approach for both wireless network topologies. We noted that the

proposed fuzzy method requires low processing and computational power. As a re-

sult, it can be applied to WSNs to provide optimal data fusion and ensure maximum

sensor lifetime and minimum time delay.

B. FUTURE WORK

This thesis leaves many issues open for future research. First, completion of

the election of a sensor node as a cluster-head using fuzzy logic theory needs to be
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implemented via a new component. This component can be a powerful central sensor

node or a user machine that can process the data quickly and have a global estimation

of the whole wireless sensor network. The implementation can be completed using the

Mamdani or the Tsukamoto fuzzy inference method. Second, a comparison between

Mamdani and Tsukamoto data fusion methods and statistical or signal processing

methods is still an open research area. Third, using other types of source-traffic

generators at target nodes remains an open and challenging issue, given that wireless

sensor network applications include different types of information (video, voice, data).

In addition, some of the queuing models presented (Chapter IV) could also

be implemented at sink nodes or at cluster-heads to observe traffic flows between

target nodes, sink nodes, and cluster-heads. Signal processing methods such as the

covariance intersection method (CI) can be used as data fusion methods [6]. A new

Java class would need to be implemented to fuse the data observations for each event

as different random variables using a statistical estimator.
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